
Getting Started withFilter Design Toolbox 4

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Getting Started with Filter Design Toolbox

© COPYRIGHT 2000–2007 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of
The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
March 2007 Online Only Revised for Version 4.1 (Release 2007a)

Contents

What Is Filter Design Toolbox?

1
Introducing Filter Design Toolbox 1-2

Key Features . 1-2

Designing a Filter in Two Steps

2
How Filter Design Toolbox Works 2-2

Basic Filter Design Process . 2-3

Using FilterBuilder to Design a Filter 2-6

Designing a Filter — a High Level Overview

3
Exploring the Process Flow Diagram 3-2

Step 1: Choose a Response . 3-3
Step 2: Choose a Specification . 3-4
Step 3: Choose an Algorithm . 3-6
Step 4: Customize the Algorithm . 3-7
Step 5: Design the Filter . 3-7
Step 6: Design Analysis . 3-8
Step 7: Realize or Apply the Filter to Input Data 3-9

iii

Designing Multirate and Multistage Filters

4
What Is a Multirate Filter? . 4-2

What Is a Multistage Filter? . 4-4

Designing a Multirate, Multistage Filter 4-5
Design a Lowpass Filter to Use as a Baseline 4-6
Design a Multirate Filter to Improve Cost 4-6
Design a Multistage Filter to Improve Cost and

Performance . 4-8

Converting from Floating-Point to Fixed-Point

5
What Is a Fixed-Point Filter? . 5-2

Floating-Point to Fixed-Point Conversion 5-3
Designing the Filter . 5-3
Quantizing the Coefficients . 5-4
Performing Dynamic Range Analysis 5-7

Data Types

6
Data Type Support . 6-2

Fixed Data Type Support . 6-3

Single Data Type Support . 6-4

iv Contents

Examples

A
Getting Started . A-2

Using Filterbuilder . A-2

Index

v

vi Contents

1

What Is Filter Design
Toolbox?

Introducing Filter Design Toolbox
(p. 1-2)

Briefly describes the key features of
Filter Design Toolbox

1 What Is Filter Design Toolbox?

Introducing Filter Design Toolbox
Filter Design Toolbox is a collection of tools that provides advanced techniques
for designing, simulating, and analyzing digital filters. It extends the
capabilities of Signal Processing Toolbox with filter architectures and design
methods for complex real-time DSP applications, including adaptive filtering
and multirate filtering, as well as filter transformations.

Used with Fixed-Point Toolbox, Filter Design Toolbox provides functions that
simplify the design of fixed-point filters and the analysis of quantization
effects. When used with Filter Design HDL Coder, Filter Design Toolbox lets
you generate VHDL and Verilog code for fixed-point filters.

Key Features

• FIR filter design, including minimum-order, minimum-phase,
constrained-ripple, halfband, Nyquist, interpolated FIR, and nonlinear
phase

• IIR filter design, including arbitrary magnitude and phase, group-delay
equalizers, constrained-pole radius, peaking, notching, and comb filters

• Multirate filter design, analysis, and implementation, including cascaded
integrator-comb (CIC) fixed-point multirate filters and compensators

• Farrow filter design

• Multirate, multistage filter design

• Wave digital filter design

• IIR filters implemented in second-order sections, including design, scaling,
and section reordering

• Analysis and implementation of digital filters in single-precision
floating-point and fixed-point arithmetic

• Perfect reconstruction and two-channel FIR filter bank design

• Round-off noise analysis for filters implemented in single-precision floating
point or fixed point

• FIR and IIR filter transformations, including lowpass to lowpass, lowpass
to highpass, and lowpass to multiband

1-2

Introducing Filter Design Toolbox

• Adaptive filter design, analysis, and implementation, including LMS-based,
RLS-based, lattice-based, frequency-domain, fast transversal, and affine
projection adaptive filters

• VHDL and Verilog code generation for fixed-point filters with the Filter
Design HDL Coder

1-3

1 What Is Filter Design Toolbox?

1-4

2

Designing a Filter in Two
Steps

How Filter Design Toolbox Works
(p. 2-2)

Describes the design process for a
simple filter using Filter Design
Toolbox

Basic Filter Design Process (p. 2-3) Guides through the basic steps of
the design process

Using FilterBuilder to Design a
Filter (p. 2-6)

Describes a filter design process
using Filterbuilder

2 Designing a Filter in Two Steps

How Filter Design Toolbox Works
The unique feature of Filter Design Toolbox is that you do not need to know
any specific filter algorithms to design a good working filter. You take a
given set of design parameters for the filter, such as a stopband frequency,
a passband frequency, and a stopband attenuation, for example, and-using
these parameters-design a specification object for the filter. Then, using this
specification object, you design the filter.

There are two distinct objects involved in filter design:

• Specification Object — Captures the required design parameters of a filter

• Filter Object — Describes the designed filter; includes the array of
coefficients and the filter structure

You can run the code in the following examples from the Help browser (select
the code, right-click the selection, and choose Evaluate Selection from
the context menu), or you can enter the code on the MATLAB® command
line. Before you begin this example, start MATLAB and verify that you
have installed Signal Processing Toolbox and Filter Design Toolbox (enter
ver at the command prompt). You should see Filter Design Toolbox, Signal
Processing Toolbox, and Fixed-Point Toolbox in the list of installed products.

2-2

Basic Filter Design Process

Basic Filter Design Process
Use the following two steps to design a simple filter.

1 Create a filter specification object.

2 Design your filter.

Assume that you want to design a bandpass filter. Typically a bandpass filter
is defined as shown in the following figure.

This bandpass filter has the following specifications:

• ast1 or Astop1 — Attenuation in the first stopband = 60

• fst1 or Fstop1 — Edge of the stopband = .35

• fp1 or Fpass1 — Edge of the passband = .45

• fp2 of Fpass2 — Closing edge of the passband = .65

• fst2 — Edge of the second stopband = .75

• ast2 or Astop2 — Attenuation in the second stopband = 60

• ap or Apass — Amount of ripple allowed in the passband = 1

Example — Design a Filter in Two Steps

1 To create a filter specification object type or evaluate the following code at
the MATLAB prompt:

2-3

2 Designing a Filter in Two Steps

>> BandPassSpecObj = fdesign.bandpass

BandPassSpecObj =

Response: 'Bandpass'
Specification: 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'

Description: {7x1 cell}
NormalizedFrequency: true

Fstop1: 0.35
Fpass1: 0.45
Fpass2: 0.55
Fstop2: 0.65
Astop1: 60
Apass: 1

Astop2: 60

Note that the specification parameters, such as Fstop1, are all given
default values when none are provided. There are only two values that
need to be changed Fpass2 and Fstop2. To set the correct values, use the
set command, which takes the object first, and then the parameter value
pairs. Type or evaluate the following code at the MATLAB prompt:

>> set(BandPassSpecObj, 'Fpass2', 0.65, 'Fstop2', 0.75)

BandPassSpecObj is the new filter specification object which contains all
the required design parameters, including the filter type.

2 Design the filter by using the design command. Evaluate or type the
following at the MATLAB prompt:

>> BandPassFilt = design(BandPassSpecObj)

BandPassFilt =

FilterStructure: 'Direct-Form FIR'
Arithmetic: 'double'
Numerator: [1x47 double]

PersistentMemory: false

To check your work, you can plot the filter magnitude response using the
Filter Visualization tool. Verify that all the design parameters are met:

2-4

Basic Filter Design Process

fvtool(BandPassFilt) %plot the filter magnitude response

2-5

2 Designing a Filter in Two Steps

Using FilterBuilder to Design a Filter
The FilterBuilder presents the option of designing a filter using a GUI dialog
as opposed to the command line instructions. You use the FilterBuilder to
design the same bandpass filter designed in the previous section, “Basic Filter
Design Process” on page 2-3

Example — Using Filterbuilder to Design a Simple Filter

To design the filter using the FilterBuilder:

1 Type or evaluate the following at the MATLAB prompt:

filterbuilder

The following dialog box opens:

2 Select Bandpass filter response from the list in the dialog box, and hit the
OK button. The following dialog box opens:

2-6

Using FilterBuilder to Design a Filter

3 Enter the correct frequencies for Fpass2 and Fstop2, as shown in the
preceding figure, then click OK. The following message appears at the
MATLAB prompt:

The variable 'Hbp' has been exported to the command window.

If you display the Workspace tab, as shown in the following figure, you see
the object Hbp has been placed on your workspace.

2-7

2 Designing a Filter in Two Steps

4 To check your work, plot the filter magnitude response using the Filter
Visualization tool. Verify that all the design parameters are met:

fvtool(Hbp) %plot the filter magnitude response

2-8

3

Designing a Filter — a High
Level Overview

Exploring the Process Flow Diagram
(p. 3-2)

Describes the process flow diagram
of designing a filter

3 Designing a Filter — a High Level Overview

Exploring the Process Flow Diagram
The process flow diagram shown in the following figure, lists the steps and
shows the order of the filter design process.

��������	
��
��	���	�	

����
�
���
��	�������

	����	���������	���
�
���
����

��	
��������	�	�������

�������
��
�����	
	
�������
��
�����
��	
�����������
�����
��	

�������
��
�
����
�����������

!"�#���	�
$�	���	�

%"�#���	�
����
�
���
��

&"�#���	�
'����
���

("�)�	
���
����

*"�'����	
	����
+��
�
���
��

,"�$���
-�����'����

��������.�����)���

/"�#�	���
-�
'����
���

������	�����������������

��������	
��
��	
��

The first three steps of the filter design process relate to the filter
Specifications Object, while the last four steps involve the Filter Object. Both
of these objects are discussed in more detail in the following sections. Step

3-2

Exploring the Process Flow Diagram

6–the analysis and verification of the designed filter, is completely optional. It
provides methods for the filter designer to ensure that the filter complies with
all design criteria. Depending on the results of this verification, you can loop
back to steps 3 and 4, to either choose a different algorithm, or to customize
the current one. You may also wish to go back to steps 3 or 4 after you filter
the input data with the designed filter (step 7), and find that you wish to
tweak the filter or change it further.

The diagram shows the help command for each step. Enter the help line at the
MATLAB command prompt to receive instructions and further documentation
links for the particular step. Not all of the steps have to be executed explicitly.
For example, you could go from step 1 directly to step 5, and the interim three
steps are done for you by Filter Design Toolbox.

Here are the details for each of the steps shown above :

• “Step 1: Choose a Response” on page 3-3

• “Step 2: Choose a Specification” on page 3-4

• “Step 3: Choose an Algorithm” on page 3-6

• “Step 4: Customize the Algorithm” on page 3-7

• “Step 5: Design the Filter” on page 3-7

• “Step 6: Design Analysis” on page 3-8

• “Step 7: Realize or Apply the Filter to Input Data” on page 3-9

Step 1: Choose a Response
If you type:

help fdesign/responses

at the MATLAB command prompt, you see a complete list of all possible filter
responses available in Filter Design Toolbox. After you choose a response,
say bandpass, you start the design of the Specifications Object by typing the
following:

d = fdesign.bandpass

3-3

3 Designing a Filter — a High Level Overview

This step cannot be skipped, nor is it automatically completed for you by Filter
Design Toolbox. You must select a response to initiate the filter design process.

Step 2: Choose a Specification
A specification is an array of design parameters for a given filter. The
specification itself is a property of the Specifications Object.

Note A specification is not the same as the Specifications Object, rather a
Specifications Object contains a specification as one of its properties.

When you select a filter response, there is a number of different specifications
available, each containing a different combination of design parameters.
In the following example, first set the filter response, then ask for the
specifications listing.

>> d = fdesign.bandpass; % step 1 - choose the response
>> set (d, 'specification')

ans =

'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'
'N,F3dB1,F3dB2'
'N,F3dB1,F3dB2,Ap'
'N,F3dB1,F3dB2,Ast'
'N,F3dB1,F3dB2,Ast1,Ap,Ast2'
'N,F3dB1,F3dB2,BWp'
'N,F3dB1,F3dB2,BWst'
'N,Fc1,Fc2'
'N,Fp1,Fp2,Ap'
'N,Fp1,Fp2,Ast1,Ap,Ast2'
'N,Fst1,Fp1,Fp2,Fst2'
'N,Fst1,Fp1,Fp2,Fst2,Ap'
'N,Fst1,Fst2,Ast'
'Nb,Na,Fst1,Fp1,Fp2,Fst2'

>> d = fdesign.decimator; % step 1 - choose the response
<<% get a list of available specifications

3-4

Exploring the Process Flow Diagram

>> set (d, 'specification')
ans =

'TW,Ast'
'N'
'N,Ast'
'N,TW'

After you select the specification that includes all of the given filter’s design
parameters, you can set it as follows:

>> d = fdesign.lowpass; % step 1
>> % step 2: get a list of available specifications
>> set (d, 'specification')
ans =

'Fp,Fst,Ap,Ast'
'N,F3dB'
'N,F3dB,Ap'
'N,F3dB,Ap,Ast'
'N,F3dB,Ast'
'N,F3dB,Fst'
'N,Fc'
'N,Fc,Ap,Ast'
'N,Fp,Ap'
'N,Fp,Ap,Ast'
'N,Fp,F3dB'
'N,Fp,Fst'
'N,Fp,Fst,Ap'
'N,Fp,Fst,Ast'
'N,Fst,Ap,Ast'
'N,Fst,Ast'
'Nb,Na,Fp,Fst'

>> %step 2: set the required specification
>> set (d, 'specification', 'N,Fc')

If you do not perform this step explicitly, Filter Design Toolbox selects a
default specification for the response you chose in “Step 1: Choose a Response”

3-5

3 Designing a Filter — a High Level Overview

on page 3-3, and even provides default values for all design parameters
included in the specification.

Step 3: Choose an Algorithm
The availability of algorithms depends on both the chosen filter response
and the design parameters. In other words, for the same lowpass filter,
changing the specification string also changes the available algorithms. In
the following example, for a lowpass filter and a specification of 'N, Fc',
only one algorithm is available—window. However, for a specification of
'Fp,Fst,Ap,Ast', a number of algorithms is available.

>> %step 2: set the required specification
>> set (d, 'specification', 'N,Fc')
>> designmethods (d) %step3: get available algorithms

Design Methods for class fdesign.lowpass (N,Fc):

window

>> %step2: set a different specification
>> set (d, 'specification', 'Fp,Fst,Ap,Ast')
>> designmethods (d) %step3: get available algorithms

Design Methods for class fdesign.lowpass (Fp,Fst,Ap,Ast):

butter
cheby1
cheby2
ellip
equiripple
ifir
kaiserwin
multistage

3-6

Exploring the Process Flow Diagram

To apply the chosen algorithm, (the Butterworth algorithm in this example),
type or evaluate the following:

>> f = design(d, 'butter');

The preceding code actually creates the filter, where f is the Filter Object.
This concept is discussed further in the next step.

If you do not perform this step explicitly, Filter Design Toolbox automatically
selects the optimum algorithm for the chosen response and specification.

Step 4: Customize the Algorithm
The customization options available for any given algorithm depend not only
on the algorithm itself, selected in “Step 3: Choose an Algorithm” on page
3-6, but also on the specification selected in “Step 2: Choose a Specification”
on page 3-4. To explore all the available options, type the following at the
MATLAB command prompt:

help (d, 'algorithm-name')

where d is the Specifications Object, and algorithm-name is the name of the
algorithm in quotes, such as 'butter' or 'cheby1'.

The application of these customization options takes place during the “Step 5:
Design the Filter” on page 3-7, because these options are the properties of the
Filter Object, not the Specification Object.

If you do not perform this step explicitly, Filter Design Toolbox automatically
selects the optimal algorithm structure as well as other options.

Step 5: Design the Filter
This next task introduces a new object, the Filter Object, or dfilt. To create a
filter, use the design command:

>> % design filter w/o specifying the algorithm
>> f = design(d);

where f is the Filter Object also referred to sometimes as dfilt, and d is
the Specifications Object. This code creates a filter without specifying the

3-7

3 Designing a Filter — a High Level Overview

algorithm. When the algorithm is not specified, Filter Design Toolbox selects
the best available one.

To apply the algorithm chosen in “Step 3: Choose an Algorithm” on page 3-6,
use the same design command, but specify the Butterworth algorithm as
follows:

>> f = design(d, 'butter');

where f is the new Filter Object, and d is the Specifications Object.

To obtain help and see all the available options, type:

>> help fdesign/design

This help command describes not only the options for the design command
itself, but also options that pertain to the method or the algorithm. If you
are customizing the algorithm, you apply these options in this step. In the
following example, you design a bandpass filter, and then modify the filter
structure:

>> f = design(d, 'butter', 'filterstructure', 'df2sos')

f =

FilterStructure: 'Direct-Form II, Second-Order Sections'
Arithmetic: 'double'
sosMatrix: [7x6 double]

ScaleValues: [8x1 double]
PersistentMemory: false

The filter design step, just like the first task of choosing a response, must be
performed explicitly. Filter Design Toolbox does not create a filter unless
you specifically tell it to do so.

Step 6: Design Analysis
After the filter is designed you may wish to analyze it to determine if the filter
satisfies the design criteria. In Filter Design Toolbox, analysis is broken into
three main sections:

3-8

Exploring the Process Flow Diagram

• Frequency domain analysis — Includes magnitude response, group delay,
and poll zero

• Time domain analysis — Includes impulse and step response

• Implementation analysis — Includes quantization noise and cost

To display help for analysis of a discrete-time filter, type:

>> help dfilt/analysis

To display help for analysis of a multirate filter, type:

>> help mfilt/functions

To display help for analysis of a farrow filter, type:

>> help farrow/functions

To analyze your filter, you must explicitly perform this step.

Step 7: Realize or Apply the Filter to Input Data
After the filter is designed and optimized, it can be used to filter actual input
data. The basic filter command takes input data x, filters it through the Filter
Object, and produces output y:

>> y = filter (FilterObj, x)

To understand how the filtering commands work, type:

>> help dfilt/filter

If you have Simulink, you have the option of exporting this filter to a Simulink
block using the realizemdl command. To get help on this command, type:

>> help realizemdl

Again, this step is never automatically performed for you by Filter Design
Toolbox. To filter your data, you must explicitly execute this step.

3-9

3 Designing a Filter — a High Level Overview

3-10

4

Designing Multirate and
Multistage Filters

What Is a Multirate Filter? (p. 4-2) Defines a multirate filter and
describes its uses

What Is a Multistage Filter? (p. 4-4) Defines a multistage filter and
describes its uses

Designing a Multirate, Multistage
Filter (p. 4-5)

Guides through an example of a
multistage filter design

4 Designing Multirate and Multistage Filters

What Is a Multirate Filter?
A multirate filter reduces or increases the input sample rate, resulting in
an output rate different from the input rate. A high input frequency, while
necessary in some cases, may be rather costly. The higher the frequency,
the more samples need to be evaluated per unit time. Increased sampling
causes a higher the load on the filter, and therefore, results in the higher the
cost. Sometimes, systems are categorized by the maximum input frequency
allowed. Hence, a typical use and reason for a multirate filter is to reduce the
output frequency of one system to an acceptable value for input by another
system. A filter that reduces the input rate is called a decimator. A filter that
increases the input rate is called an interpolator. To visualize this process,
review the following figure.

)��
���
������%

.���������
������%

If you start with the top signal, sampled at x frequency, then the bottom
signal is sampled at x/2 frequency. In this case, the decimation factor, or M, is
2. Interestingly enough, in decimation, the cost of the filter is also reduced
by M. If decimation has these advantages, why not use it all the time? The
following list describes restrictions and requirements for use with decimation:

• The sampling frequency divided by 2 must be greater than the system’s
highest frequency. For example, if you have a lowpass filter with the

4-2

What Is a Multirate Filter?

highest frequency of 10 MHz, and a sampling frequency of 60 MHz, the
highest frequency that can be handled by the system without aliasing
is 60 2 30/ = , which is greater than 10. You could safely set M = 2 in this

case, since 60 2 2 15/ /() = , which is still greater than 10.

• If you wish to decimate a signal which does not meet the frequency criteria,
you can either:

- Interpolate first, and then decimate

- Use a lowpass filter first to reduce the highest signal frequency, thereby
allowing decimation without aliasing

• M must be an integer. Although, if you wish to obtain an M of 4/5, you
could interpolate by 4, and then decimate by 5, provided that frequency
restrictions are met.

• If you decimate in multiple stages, use the highest factors first. For
example, if you want to decimate by a factor of 24 in 3 stages, use 4, then 3,
then 2. This order brings the highest cost savings.

Multirate filters are most often used in stages. This technique is introduced
in the following section.

4-3

4 Designing Multirate and Multistage Filters

What Is a Multistage Filter?
A multistage filter consists of several filters connected in series. Each filter in
this series is called a stage.

There are many different uses for a multistage filter. One of these is a filter
requirement that includes a very narrow transition width. For example,
you need to design a lowpass filter where the difference between the pass
frequency and the stop frequency is .01 (normalized). For such a requirement
it is possible to design a single filter, but it will be very long (containing many
coefficients) and very costly (having many multiplications and additions per
input sample). Thus, this single filter may be so costly and require so much
memory, that it may be impractical to implement in certain applications where
there are strict hardware requirements. In such cases, a multistage filter is
a great solution. Another application of a multistage filter is for a multirate
system, where there is a decimator or an interpolator with a large factor. In
these cases, it is usually wise to break up the filter into several multirate
stages, each comprising a multiple of the total decimation/interpolation factor.

Typically a multistage filter is not easy to design by hand. It’s difficult to
guess how many stages would provide an optimal design, to optimize each
stage, and then optimize all the stages together. Filter Design Toolbox enables
you to create a Specifications Object, and then design a filter using multistage
as an option. The rest of the work is done automatically. Not only does Filter
Design Toolbox determine the optimal number of stages, but it also optimizes
the total filter solution.

4-4

Designing a Multirate, Multistage Filter

Designing a Multirate, Multistage Filter
This example consists of the following steps:

1 “Design a Lowpass Filter to Use as a Baseline” on page 4-6

2 “Design a Multirate Filter to Improve Cost” on page 4-6

3 “Design a Multistage Filter to Improve Cost and Performance” on page 4-8

Typically, a lowpass filter is described as shown in the following diagram.

For this lowpass filter, the design parameters are:

• Fpass — The closing frequency of the passband

• Fstop — The opening frequency of the stopband

• Apass — The ripple allowed in the passband

• Astop — The minimum attenuation required in the stopband

In this example, you design a filter where the difference between Fpass and
Fstop is very small, i.e., the filter transition width is very narrow. For such
filters the multistage design is clearly beneficial.

4-5

4 Designing Multirate and Multistage Filters

Design a Lowpass Filter to Use as a Baseline
Start with a simple lowpass filter; this will later serve as the baseline for
further comparisons. To design a lowpass filter, type or evaluate the following
code:

>> Fpass = 0.11;
>> Fstop = 0.12;
>> Apass = 0.02;
>> Astop = 60;
>> SOlowpass = fdesign.lowpass(Fpass, Fstop, Apass, Astop);
>> Flowpass = design (SOlowpass, 'equiripple');
>> cost (Flowpass)

ans =

Number of Multipliers : 649
Number of Adders : 648
Number of States : 648
MultPerInputSample : 649
AddPerInputSample : 648

As shown in the code, this design requires 649 multiplications per input
sample (MPIS). Depending on the application where this filter is to be used,
this may not be feasible.

Design a Multirate Filter to Improve Cost
Looking at the filter specifications shows that the Fstop is very low, 0.12.
This is the highest frequency of the system, normalized by Fs/2. According
to the guidelines for decimation discussed earlier, decimation can be used
here to reduce cost. The first step is to find the largest possible decimation

factor, M. From decimation restrictions, you know that: Fstop M Fs* /< 2 .
Since the system is already normalized by Fs/2, we can rewrite this formula

as: Fstop M* < 1 , where Fstop = 0.12 . So, the largest possible integer value

of M would be 8, which would make Fstop M* .= 96 , which is still less than 1.

Using the design parameters for the baseline lowpass filter, design a multirate
filter with M=8:

4-6

Designing a Multirate, Multistage Filter

>> M = 8;
>> SOmultirate = fdesign.decimator(M, 'lowpass',

Fpass, Fstop, Apass, Astop);
>> Fmultirate = design (SOmultirate, 'equiripple')
>> cost (Fmultirate)

ans =

Number of Multipliers : 649
Number of Adders : 648
Number of States : 648
MultPerInputSample : 81.125
AddPerInputSample : 81

The code shows that the cost has decreased from 649 MPIS to 81.125 MPIS.
Plotting the response of the multirate filter together with the lowpass filter
shows that they completely overlap each other.

Thus, for exactly the same performance, the cost of the filter is reduced by
8. Now, if you break up the decimation into several stages, the cost can be
reduced even further. The next section shows how to further improve cost
and performance.

4-7

4 Designing Multirate and Multistage Filters

Design a Multistage Filter to Improve Cost and
Performance
So far this example has shown that solving a narrow transition width problem
with a multirate filter drastically reduces the cost of the filter. The decimation
factor of 8 can be easily broken into several stages, thereby even further
lowering the cost.

The typical problem at this point is to find the optimal structure, or number
of stages. Is it better to have two stages, one with M=4, and the other with
M=2, or is it better to have three stages, each with M=2? Only one line of
code is necessary for Filter Design Toolbox to find the most optimal solution
for the specified problem. To design this multirate, multistage filter, you
continue working with the example from the preceding sections, using the
filter Specifications Object created for the multirate filter:

>> Fmultistage = design(SOmultirate, 'multistage')

Fmultistage =

FilterStructure: Cascade
Stage(1): Direct-Form FIR Polyphase Decimator
Stage(2): Direct-Form FIR Polyphase Decimator
Stage(3): Direct-Form FIR Polyphase Decimator

PersistentMemory: false

>> cost (Fmultistage)

ans =

Number of Multipliers : 195
Number of Adders : 192
Number of States : 190
MultPerInputSample : 29.5
AddPerInputSample : 28.625

The optimal filter now has three stages, each with an M=2, and the cost has
been reduced from 649 MPIS to 29.5 MPIS — a significant savings! The
following figure shows the performance of the regular lowpass filter and the
multistage, multirate filter. In this figure, it is clear that not only the cost,
but also the performance is improved.

4-8

Designing a Multirate, Multistage Filter

0����		 1���
	����

4-9

4 Designing Multirate and Multistage Filters

4-10

5

Converting from
Floating-Point to
Fixed-Point

What Is a Fixed-Point Filter? (p. 5-2) Defines a fixed-point filter and
explains the need for it

Floating-Point to Fixed-Point
Conversion (p. 5-3)

Explains how to convert a
floating-point filter to a fixed-point
filter

5 Converting from Floating-Point to Fixed-Point

What Is a Fixed-Point Filter?
A fixed-point filter is represented by an equation with fixed-point coefficients.
To learn about fixed-point math, see “Fixed-Point Concepts” in “Fixed-Point
Toolbox” documentation. The most common use of fixed-point filters is in the
DSP chips, where the data storage capabilities are limited. For example, the
data input may come from a 12 bit ADC, the data bus may be 16 bit, and the
multiplier may have 24 bits. Within these space constraints, Filter Design
Toolbox enables you to design the best possible fixed-point filter.

5-2

Floating-Point to Fixed-Point Conversion

Floating-Point to Fixed-Point Conversion
The conversion from floating-point to fixed-point consists of two main parts:
quantizing the coefficients and performing the dynamic range analysis.
Quantizing the coefficients is a process of converting the coefficients to
fixed-point numbers. The dynamic range analysis is a process of fine tuning
the scaling of each node to ensure that the fraction lengths are set for full
input range coverage and maximum precision. The following steps describe
this conversion process. In the first step you design the floating-point filter
to be converted.

1 “Designing the Filter” on page 5-3

2 “Quantizing the Coefficients” on page 5-4

3 “Performing Dynamic Range Analysis” on page 5-7

Designing the Filter
Start by designing a regular, floating-point, equiripple bandpass filter, as
shown in the following figure.

5-3

5 Converting from Floating-Point to Fixed-Point

where the passband is from .45 to .55 of normalized frequency, the amount
of ripple acceptable in the passband is 1 dB, the first stopband is from 0 to
.35 (normalized), the second stopband is from .65 to 1 (normalized), and both
stopbands provide 60 dB of attenuation.

To design this filter, evaluate the following code, or type it at the MATLAB
command prompt:

>> f = fdesign.bandpass(.35,.45,.55,.65,60,1,60);
>> Hd = design(f, 'equiripple');
>> fvtool(Hd)

The last line of code invokes the Filter Visualization Tool, which displays the
designed filter. You use Hd, which is a double, floating-point filter, both as the
baseline and a starting point for the conversion.

Quantizing the Coefficients
The first step in quantizing the coefficients is to find the valid word length
for the coefficients. Here again, the hardware usually dictates the maximum
allowable setting. However, if this constraint is large enough, there is room for
some trial and error. Start with the coefficient word length of 8 and determine
if the resulting filter is sufficient for your needs.

To set the coefficient word length of 8, evaluate or type the following code
at the MATLAB command prompt:

>> Hf = Hd;
>> Hf.Arithmetic = 'fixed';
>> set(Hf, 'CoeffWordLength', 8);
>> fvtool(Hf)

The resulting filter is shown in the following figure.

5-4

Floating-Point to Fixed-Point Conversion

As the figure shows, the filter design constraints are not met. The attenuation
is not complete, and there is noise at the edges of the stopbands. You can
experiment with different coefficient word lengths if you like. For this
example, however, the word length of 12 is sufficient.

To set the coefficient word length of 12, evaluate or type the following code
at the MATLAB command prompt:

>> set(Hf, 'CoeffWordLength', 12);
>> fvtool(Hf)

The resulting filter satisfies the design constraints, as shown in the following
figure.

5-5

5 Converting from Floating-Point to Fixed-Point

Now that the coefficient word length is set, there are other data width
constraints that might require attention. Type the following at the MATLAB
command prompt:

>> get (Hf)
PersistentMemory: 0

NumSamplesProcessed: 0
FilterStructure: 'Direct-Form FIR'

States: [47x1 embedded.fi]
Numerator: [1x48 double]

Arithmetic: 'fixed'
CoeffWordLength: 12
CoeffAutoScale: 1

Signed: 1
RoundMode: 'convergent'

OverflowMode: 'wrap'
InputWordLength: 16
InputFracLength: 15

NumFracLength: 14
FilterInternals: 'FullPrecision'

OutputWordLength: 31
OutputFracLength: 29

5-6

Floating-Point to Fixed-Point Conversion

ProductWordLength: 27
ProductFracLength: 29

AccumWordLength: 31
AccumFracLength: 29

You see the output is 31 bits, the accumulator requires 31 bits and the
multiplier requires 27 bits. A typical piece of hardware might have a 16 bit
data bus, a 24 bit multiplier, and an accumulator with 4 guard bits. Another
reasonable assumption is that the data comes from a 12 bit ADC. To reflect
these constraints type or evaluate the following code:

>> set (Hf, 'InputWordLength', 12);
>> set (Hf, 'FilterInternals', 'SpecifyPrecision')
>> set (Hf, 'ProductWordLength', 24)
>> set (Hf, 'AccumWordLength', 28)
>> set (Hf, 'OutputWordLength', 16)

Although the filter is basically done, if you try to filter some data with it at
this stage, you may get erroneous results due to overflows. Such overflows
occur because you have defined the constraints, but you have not tuned the
filter coefficients to handle properly the range of input data where the filter
is designed to operate. Next, the dynamic range analysis is necessary to
ensure no overflows.

Performing Dynamic Range Analysis
The purpose of the dynamic range analysis is to fine tune the scaling of the
coefficients. The ideal set of coefficients is valid for the full range of input
data, while the fraction lengths maximize precision. Consider carefully the
range of input data to use for this step. If you provide data that covers the
largest dynamic range in the filter, the resulting scaling is more conservative,
and some precision is lost. If you provide data that covers a very narrow
input range, the precision can be much greater, but an input out of the design
range may produce an overflow. In this example, you use the worst-case input
signal, covering a full dynamic range, in order to ensure that no overflow
ever occurs. This worst-case input signal is a scaled version of the sign of
the flipped impulse response.

To scale the coefficients based on the full dynamic range, type or evaluate
the following code:

5-7

5 Converting from Floating-Point to Fixed-Point

>> x = 1.9*sign(fliplr(impz(Hf)));
>> Hf = autoscale(Hf, x);

To check that the coefficients are in range (no overflows) and have maximum
possible precision, type or evaluate the following code:

>> fipref('LoggingMode', 'on', 'DataTypeOverride', 'ForceOff');
>> y = filter(Hf, x);
>> fipref('LoggingMode', 'off');
>> R = qreport(Hf)

Where R is shown in the following figure:

The report shows no overflows, and all data falls within the designed range.
The conversion has completed successfully.

5-8

6

Data Types

Data Type Support (p. 6-2) Lists the data types and how they
are supported

Fixed Data Type Support (p. 6-3) Describes the functions and packages
that support the Fixed data type

Single Data Type Support (p. 6-4) Describes the functions and packages
that support the Single data type

6 Data Types

Data Type Support
There are three different data types supported in Filter Design Toolbox:

• Fixed — Requires Fixed Point Toolbox and is supported by packages listed
in “Fixed Data Type Support” on page 6-3.

• Double — Double precision, floating point and is the default data type for
Filter Design Toolbox; accepted by all functions

• Single — Single precision, floating point and is supported by specific
packages outlined in “Single Data Type Support” on page 6-4.

6-2

Fixed Data Type Support

Fixed Data Type Support
To use fixed data type, you must have Fixed Point Toolbox. Type ver at the
MATLAB command prompt to get a listing of all installed products.

The fixed data type is reserved for any filter whose property arithmetic is
set to fixed. Furthermore all functions that work with this filter, whether in
analysis or design, also accept and support the fixed data types.

To set the filter’s arithmetic property:

>> f = fdesign.bandpass(.35,.45,.55,.65,60,1,60);
>> Hf = design(f, 'equiripple');
>> Hf.Arithmetic = 'fixed';

6-3

6 Data Types

Single Data Type Support
The support of the single data types comes in two varieties. First, input data
of type single can be fed into a double filter, where it is immediately converted
to double. Thus, while the filter still operates in the double mode, the single
data type input does not break it. The second variety is where the filter itself
is set to single precision. In this case, it accepts only single data type input,
performs all calculations, and outputs data in single precision. Furthermore,
such analyses as noisepsd and freqrespest also operate in single precision.

To set the filter to single precision:

>> f = fdesign.bandpass(.35,.45,.55,.65,60,1,60);
>> Hf = design(f, 'equiripple');
>> Hf.Arithmetic = 'single';

6-4

A

Examples

Use this list to find examples in the documentation.

A Examples

Getting Started
Example — Design a Filter in Two Steps on page 2-3
“Designing a Multirate, Multistage Filter” on page 4-5
“Floating-Point to Fixed-Point Conversion” on page 5-3

Using Filterbuilder
Example — Using Filterbuilder to Design a Simple Filter on page 2-6

A-2

Index

IndexD
data types 6-2

fixed 6-3
single 6-4

decimation factor 4-2
decimator 4-2

simple example 4-6
design a filter 2-3

filterbuilder 2-6
design methods 3-6

customize 3-7

F
filter algorithm 3-6

choosing 3-6
filter cost 4-2
filter data 3-9
filter design

customize algorithm 3-7
filter analysis 3-8
Filter Object 3-7
flow chart 3-2
lowpass 4-5
multirate 4-5
multistage 4-5
process 3-2
specification 3-4
Specifications Object 3-3

filter design parameters 3-4
filter response 3-3
filterbuilder 2-6
fixed-point filter 5-2

conversion from floating-point 5-3

definition 5-2

G
getting started 2-2
getting started example 2-2

I
interpolator 4-2

L
lowpass filter

simple example 4-6

M
M factor 4-2
multirate filter

definition 4-2
multistage filter

definition 4-4
simple example 4-8
uses 4-4

R
realize data 3-9

T
toolbox

getting started 2-2

Index-1

	toc
	What Is Filter Design Toolbox?
	Introducing Filter Design Toolbox
	Key Features

	Designing a Filter in Two Steps
	How Filter Design Toolbox Works
	Basic Filter Design Process
	Example — Design a Filter in Two Steps
	Using FilterBuilder to Design a Filter
	Example — Using Filterbuilder to Design a Simple Filter

	Designing a Filter — a High Level Overview
	Exploring the Process Flow Diagram
	Step 1: Choose a Response
	Step 2: Choose a Specification
	Step 3: Choose an Algorithm
	Step 4: Customize the Algorithm
	Step 5: Design the Filter
	Step 6: Design Analysis
	Step 7: Realize or Apply the Filter to Input Data

	Designing Multirate and Multistage Filters
	What Is a Multirate Filter?
	What Is a Multistage Filter?
	Designing a Multirate, Multistage Filter
	Design a Lowpass Filter to Use as a Baseline
	Design a Multirate Filter to Improve Cost
	Design a Multistage Filter to Improve Cost and Performance

	Converting from Floating-Point to Fixed-Point
	What Is a Fixed-Point Filter?
	Floating-Point to Fixed-Point Conversion
	Designing the Filter
	Quantizing the Coefficients
	Performing Dynamic Range Analysis

	Data Types
	Data Type Support
	Fixed Data Type Support
	Single Data Type Support

	Examples
	Getting Started
	Using Filterbuilder

	Index

